Mobile Notice
It seems that you are on your mobile phone, which means that the screen's width is narrow for some equations. For the best viewing experience, you can view this website in landscape mode.

Composite Functions

Author | Engr. Nico O. Aspra, M.Eng., RMP, LPT

$$ $$

Another method of combining functions is by composition, where a function contains another function. To understand this, let’s say you want apple juice, but this time, instead of just juicing it, you also want to put it in a can. So, you’ll need an additional stage where the juice will go through a canning machine.

In representing this, let’s name the juicer $g$, the canning machine $f$, and the freshly picked apple $x$. If we place the apple into the juicer, we’ll get apple juice, represented as $g(x)$. Continuing the process and placing the apple juice through the canning machine, we get the final output of canned apple juice, represented as $f(g(x))$.

my alt text

Figure 1

If $f$ and $g$ are both functions of $x$, where $f$ is the outer function and $g$ is the inner function ($f$ is composed with $g$), the composite function is denoted as $(f \circ g)(x)=f(g(x))$, which is read as “$f$ of $g$ of $x$”.

$$\begin{align} (f \circ g)(x)=f(g(x)) \end{align}$$

For example, given two functions $\tcA{f(x)=2x+5}$ and $\tcB{g(x)=3x-4}$, determine $(f \circ g)(x)$

\[\begin{align*} (f \circ g)(x) &= f(g(x)) \end{align*}\]

Start with the outer function $f(x)$,

\[\begin{align*} \tcA{f(x)} &\tcA{= 2x+5} \end{align*}\]

Then substitute all instances of $x$ with $g(x)$,

\[\begin{align*} \tcA{f(}\tcB{g(x)}\tcA{)} &= \tcA{2(}\tcB{g(x)}\tcA{) + 5} \end{align*}\]

Since $g(x)=3x-4$,

\[\begin{align*} \tcA{f(}\tcB{g(x)}\tcA{)} &= \tcA{2(}\tcB{3x-4}\tcA{) + 5} \\ &= 6x-8+5 \\ &= 6x-3 \end{align*}\]

Hence, $(f \circ g)= 6x-3$


$\example{1}$ If $ f(x)=x^2 $ and $ g(x)=x+1 $, find: a. $ (f \circ g)(x) $, b. $ (g \circ f)(x) $, c. $ (f \circ f)(x) $, d. $ (g \circ g)(x) $

$\solution$

$\For{a}$
\(\begin{align*} (f \circ g)(x) &= f(g(x)) \\ f(x) &= x^2 \\ f(g(x)) &= [g(x)]^2 \\ &= (x+1)^2 \\ &= x^2+2x+1 \tagans \end{align*}\)

$\For{b}$
\(\begin{align*} (g \circ f)(x) &= g(f(x)) \\ g(x) &= x+1 \\ g(f(x)) &= f(x)+1\\ &= x^2+1 \tagans \end{align*}\)

$\For{c}$
\(\begin{align*} (f \circ f)(x) &= f(f(x)) \\ f(x) &= x^2 \\ f(f(x)) &= [f(x)]^2 \\ &= (x^2)^2 \\ &= x^4 \tagans \end{align*}\)

$\For{d}$
\(\begin{align*} (g \circ g)(x) &= g(g(x)) \\ g(x) &= x+1 \\ g(g(x)) &= [g(x)]+1 \\ &= (x+1)+1 \\ &= x+2 \tagans \end{align*}\)


$\example{2}$ If $ g(x)= 2x+1$ and $ h(x)=3-x^2$, find: a. $ g(h(0)) $, b. $ h(g(2)) $, c. $ g(g(-3)) $, d. $ h(h(1/2)) $

$\solution$

$\For{a}$
\(\begin{align*} g(x) &= 2x+1 \\ g(h(x)) &= 2(3-x^2)+1 \\ g(h(0)) &= 2[3-(0)^2]+1 \\ &= 2(3)+1 \\ &= 7 \tagans \end{align*}\)

$\For{b}$
\(\begin{align*} h(x) &= 3-x^2 \\ h(g(x)) &= 3-(2x+1)^2 \\ h(g(2)) &= 3-[2(2)+1]^2 \\ &= 3-(5)^2 \\ &= -22 \tagans \end{align*}\)

$\For{c}$
\(\begin{align*} g(x) &= 2x+1 \\ g(g(x)) &= 2(2x+1)+1 \\ g(g(-3)) &= 2[2(-3)+1]+1 \\ &= 2(-5)+1 \\ &= -9 \tagans \end{align*}\)

$\For{d}$
\(\begin{align*} h(x) &= 3-x^2 \\ h(h(x)) &= 3-(3-x^2)^2 \\ h(h(1/2)) &= 3-[3-(1/2)^2]^2 \\ &= 3-\br{ 3-\frac{1}{4} }^2 \\ &= 3-\br{ \frac{11}{4} }^2 \\ &= -\frac{73}{16} \tagans \end{align*}\)


$\example{3}$ If $ f(x)=x+3$, $ g(x)=(x+1)^2$ and $ h(x)=\frac{1}{x}$, find: a. $ f(g(h(x))) $, b. $ g(h(f(x))) $, c. $ h(f(g(2))) $, d. $ h(g(f(x))) $, e. $ f(h(g(x))) $, f. $ g(f(h(1/2))) $

$\solution$

$\For{a}$
\(\begin{align*} f(x) &= x+3 \\ f(g(x)) &= (x+1)^2+3 \\ f(g(h(x))) &= \br{ \frac{1}{x}+1 }^2+3 \\ &= \br{ \frac{1}{x^2}+\frac{2}{x}+1 }+3 \\ &= \frac{1}{x^2}+\frac{2}{x}+4 \tagans \end{align*}\)

$\For{b}$
\(\begin{align*} g(x) &= (x+1)^2 \\ g(h(x)) &= \br{ \frac{1}{x}+1 }^2 \\ g(h(f(x))) &= \br{ \frac{1}{x+3}+1 }^2 \\ &= \br{ \frac{1}{x+3}+\frac{x+3}{x+3} }^2 \\ &= \br{ \frac{x+4}{x+3} }^2 \\ &= \frac{(x+4)^2}{(x+3)^2} \tagans \end{align*}\)

$\For{c}$
\(\begin{align*} h(x) &= \frac{1}{x} \\ h(f(x)) &= \frac{1}{x+3} \\ h(f(g(x))) &= \frac{1}{(x+1)^2+3} \\ h(f(g(2))) &= \frac{1}{(2+1)^2+3} \\ &= \frac{1}{12} \tagans \end{align*}\)

$\For{d}$
\(\begin{align*} h(x) &= \frac{1}{x} \\ h(g(x)) &= \frac{1}{(x+1)^2} \\ h(g(f(x))) &= \frac{1}{[(x+3)+1]^2} \\ &= \frac{1}{(x+4)^2} \tagans \end{align*}\)

$\For{e}$
\(\begin{align*} f(x) &= x+3 \\ f(h(x)) &= \frac{1}{x}+3 \\ f(h(g(x))) &= \frac{1}{(x+1)^2}+3 \\ &= \frac{1+3(x+1)^2}{(x+1)^2} \\ &= \frac{1+3(x^2+2x+1)}{\left(x+1\right)^2} \\ &= \frac{3x^2+6x+4}{\left(x+1\right)^2} \tagans \end{align*}\)

$\For{f}$
\(\begin{align*} g(x) &= (x+1)^2 \\ g(f(x)) &= (x+3+1)^2 \\ g(f(h(x))) &= \br{ \frac{1}{x}+4 }^2 \\ g(f(h(1/2))) &= \br{ \frac{1}{\frac{1}{2}}+4 }^2 \\ &= (2+4)^2 \\ &= 36 \tagans \end{align*}\)


$\example{4}$ If $ f(x)= \frac{2}{x+1}$ and $ f(g(x))=x$, determine $g(x)$.

$\solution$

In this case, the composed function is one of the given,
\(\begin{align*} f(g(x)) &= x \end{align*}\)

Start with $f(x)$

\[\begin{align*} f(x) &= \frac{2}{x+1} \\ f(g(x)) &= \frac{2}{ g(x) +1} \end{align*}\]

Since $f(g(x))=x$,

\[\begin{align*} \frac{2}{ g(x) +1} &= x \\ g(x) +1 &= \frac{2}{x} \\ g(x) &= \frac{2}{x} -1 \tag*{(ans.)} \end{align*}\]

You can check your answer by composing the function,

\[\begin{align*} f(x) &= \frac{2}{x+1} \\ f(g(x)) &= \frac{2}{\br{ \frac{2}{x} -1 }+1} \\ &= \frac{2}{\frac{2}{x}} \\ &= x \end{align*}\]