Mobile Notice
It seems that you are on your mobile phone, which means that the screen's width is narrow for some equations. For the best viewing experience, you can view this website in landscape mode.

Odd and Even Functions

Author | Engr. Nico O. Aspra, M.Eng., RMP, LPT

$$ $$

Odd and Even functions can be easily determined graphically based on its symmetry. A function is considered “even” if its graph is symmetrical with respect to the $y$-axis or the graph is reflected at the other side of the $y$-axis, while a function is considered as an “odd” function if its graph is symmetrical with respect to the origin.

my alt text

Having the knowledge if a function is Odd or Even is a great help in graphing the function, since we’ll be able to know its symmetry. In order to identify algebraically if a function is odd, even or neither, we need to replace $x$ with $-x$ in the function. If the result is equal to the original function, then the function is even; if it is the negative of the original function, then the function is odd; and if it is not of the two, then the function is neither odd nor even.

$$\begin{align} \text{Even Function} && f(-x)&=f(x) \label{eq:even function}\\ \text{Odd Function} && f(-x)&=-f(x) \label{eq:odd function} \end{align}$$


$\example{1}$ Determine whether the function $f(x)=x^4+2x^2-3$ is odd, even, or neither

$\solution$

Replace $x$ with $-x$,

\[\begin{align*} f(-x) &= (-x)^4+2(-x)^2-3 \\ &= x^4+2x^2-3 \end{align*}\]

Since $f(x)=x^4+2x^2-3$,

\[\begin{align*} f(-x) &= f(x) \end{align*}\]

Hence, the function is Even

my alt text

$\example{2}$ Determine whether the function $g(x)=5x^3-3x$ is odd, even, or neither

$\solution$

Replace $x$ with $-x$,

\[\begin{align*} g(-x) &= 5(-x)^3-3(-x) \\ &= -5x^3+3x \\ &= -(5x^3-3x) \\ \end{align*}\]

Since $g(x)=5x^3-3x$,

\[\begin{align*} g(-x) &=-g(x) \end{align*}\]

Hence, the function is Odd

my alt text

$\example{3}$ Determine whether the function $\phi(x)=-2x^5+2x^3$ is odd, even, or neither

$\solution$

Replace $x$ with $-x$,

\[\begin{align*} \phi(-x) &= -2(-x)^5+2(-x)^3 \\ &= 2x^5-2x^3 \\ &= -(-2x^5+2x^3) \\ \end{align*}\]

Since $\phi(x)=-2x^5+2x^3$,

\[\begin{align*} \phi(-x) &= -\phi(x) \end{align*}\]

Hence, the function is Odd

my alt text

$\example{4}$ Determine whether the function $F(x)=\frac{8}{x^2+3}$ is odd, even, or neither

$\solution$

Replace $x$ with $-x$,

\[\begin{align*} F(-x) &= \frac{8}{(-x)^2+3} \\ &= \frac{8}{x^2+3} \\ F(-x) &= F(x) \end{align*}\]

Hence, the function is Even

my alt text

$\example{5}$ Determine whether $h(x)=2x^3-x^2-5x+2$ is odd, even, or neither

$\solution$

Replace $x$ with $-x$,

\[\begin{align*} h(-x) &= 2x^3-x^2-5x+2 \\ &= 2(-x)^3-(-x)^2-5(-x)+2 \\ &= -2x^3-x^2+5x+2 \end{align*}\]

$h(-x) \neq h(x)$ and $h(-x) \neq -h(x)$ hence, the function is neither odd nor even

my alt text