Mobile Notice
It seems that you are on your mobile phone, which means that the screen's width is narrow for some equations. For the best viewing experience, you can view this website in landscape mode.

Logarithmic Functions

Author | Engr. Nico O. Aspra, M.Eng., RMP, LPT

$$ $$

Logarithms are the inverse of exponentials. This can be useful in solving for the exponent of an equation in the form $x=b^y$ or vice versa since the exponential function $x=b^y$ can be written in the form of a logarithmic function $y=\log_{b}x$.

$$\begin{align} y=\log_{b}x \quad\text{is equivalent to}\quad x=b^y \end{align}$$

Where $b$ is any number given that $b>0$ and $b \neq 1$. And $y=\log_{b}x$ is usually read as “log base $b$ of $x$”

If you recall the methods in solving for the inverse of a function, let us attempt to solve the inverse of the exponential function $f(x)=b^x$,

\[\begin{align*} f(x) &= b^x \\ y &= b^x && \tcA{\text{replace $f(x)$ with $y$}} \\ x &= b^y && \tcA{\text{switch $x$ and $y$}} \\ y &= \log_b{x} && \tcA{\text{solve for $y$}} \\ f^{-1}(x) &= \log_b{x} \end{align*}\]

Hence, this proves that Exponential and Logarithmic Functions are indeed inverses of each other.


$\example{1}$ Solve for $x$ if $\log_{10} x =2$

$\solution$

Express the logarithmic function as an exponential function,

\[\begin{align*} \log_{10} x &= 2 \\ x &= 10^2 \quad \tcA{\log_b x = y \;\tcB{\Rightarrow}\; x=b^y} \\ &= 100 \tagans \end{align*}\]

Common Logarithm (Briggsian Logarithm)

Common Logarithm is a type logarithm whose base is 10 and is the inverse of the exponential function $10^x$. It is abbreviated as “log” which means the same as “$\log_{10}$”. The function $x= 10^y$ can be expressed in the logarithmic form $y=\log_{10}x$ which can also be written as $y=\log{x}$.

$$\begin{align} \log{x} = \log_{10}x \end{align}$$

Natural Logarithm (Napierian Logarithm)

Natural logarithm is a type logarithm whose base is $e$ (Euler’s number) and is the inverse of the exponential function $e^x$. It is abbreviated as “ln” which means the same as “$\log_{e}$”. The function $x=e^y$ can be expressed in the logarithmic form $y=\log_{e}x$ which can also be written as $y=\ln{x}$.

$$\begin{align} \ln{x} = \log_{e}x \end{align}$$

Properties of Common and Natural Logarithm

$\tcBal{Properties of Common Logarithms}$ $$ \begin{align} \log⁡(xy) &= \log ⁡x + \log ⁡y \\ \log⁡\br{\frac{x}{y} } &= \log ⁡x - \log ⁡y \\ \log⁡ x^n &= n \log ⁡x \\ \log_y⁡x &= \frac{\log⁡ x}{\log⁡ y} \\ \log_x⁡ x &= 1 \\ \log⁡ 1 &= 0 \\ y^{\log_{y⁡}x} &= x \\ \log⁡ 0 &= -\infty \end{align} $$

$\tcBal{Properties of Natural Logarithms}$ $$ \begin{align} \ln⁡(xy) &= \ln ⁡x + \ln ⁡y \\ \ln\br{ ⁡\frac{x}{y} } &= \ln ⁡x - \ln ⁡y \\ \ln⁡ x^n &= n \ln ⁡x \\ \log_y⁡x &= \frac{\ln⁡ x}{\ln⁡ y} \\ \ln e &= 1 \\ \ln⁡ 1 &= 0 \\ e^{\ln x} &= x \\ \ln 0 &= -\infty \end{align} $$


$\example{2}$ Solve for $x$: $\log_4(x+3) = 2$

$\solution$

Express the logarithmic function in an exponential form,

\[\begin{align*} \log_4(x+3) &= 2 \\ x+3 &= 4^2 \quad\quad \tcA{\log_b x = y \;\tcB{\Rightarrow}\; x=b^y} \\ x &= 16-3 \\ &= 13 \tagans \end{align*}\]

$\example{3}$ Solve for $x$: $\log_{5}(x+3)+\log_{5}5 = 2$

$\solution$

Combine the terms that contains logarithms,

\[\begin{align*} \log_{5}(x+3)+\log_{5}5 &= 2 \\ \log_{5}[5(x+3)] &= 2 \quad \tcA{\log(xy)=\log{x} + \log{y}} \\ 5(x+3) &= 5^2 \\ 5x + 15 &= 25 \\ x &= 2 \tagans \end{align*}\]

$\example{4}$ Solve for $x$: $\ln x = \ln\frac{1}{2}+\ln 2-\ln 3$

$\solution$

Combine the terms for each side of the equation that contains logarithms.

\[\begin{align*} \ln x &= \ln\frac{1}{2}+\ln 2-\ln 3 \\ &= \ln\br{\frac{\frac12 \cdot 2}{3}} \qquad\tcA{\ln\br{\frac{x}{y}} = \ln x - \ln y} \\ \ln x &= \ln\frac{1}{3} \end{align*}\]

Raise both sides to a power with base $e$,

\[\begin{align*} e^{\ln{x}} &= e^{\ln\frac13} \qquad\qquad\quad\tcA{e^{\ln x} = x} \\ x &= \frac{1}{3} \tagans \end{align*}\]

$\example{5}$ Solve for $x$: $\ln{x} = 2\ln{3}-\ln{e}$

$\solution$
\[\begin{align*} \ln{x} &- 2\ln{3} - \ln{e} \\ &= \ln{3^2}-\ln{e} \quad\tcA{\ln{x^n} = n\ln x} \\ &= \ln\frac{3^2}{e} \\ e^{\ln x} &= e^{\ln\frac{9}{e}} \\ x &= \frac{9}{e} \tagans \end{align*}\]

$\example{6}$ Solve for $x$: $\ln(x+6)+\ln(2-x) = \ln 15$

$\solution$
\[\begin{align*} \ln(x+6)+\ln(2-x) &= \ln 15 \\ \ln[(x+6)(2-x)] &= \ln{15} \\ \ln(-x^2-4x+12) &= \ln{15} \\ e^{\ln(-x^2-4x+12)} &= e^{\ln{15}} \\ -x^2-4x+12 &= 15 \\ x^2+4x+3 &= 0 \end{align*}\]

Then factor the equation,

\[\begin{align*} (x+3)(x+1) &= 0 \end{align*}\]

Thus,

\[\begin{align*} x+3 &= 0 & x+1 &= 0 \\ x &= -3 & x &= -1 \tagans \end{align*}\]

$\example{7}$ Solve for $x$: $2^x = 3$

$\solution$

Express the exponential function in a logarithmic form,

\[\begin{align*} 2^x &= 3 \\ x &= \log_{2}3 \tagans \end{align*}\]

$\example{8}$ Solve for $x$: $3^{5x} = 4^{2x+1}$

$\solution$

Get the natural logarithm of both sides of the equation,

\[\begin{align*} 3^{5x} &= 4^{2x+1} \\ \ln(3^{5x}) &= \ln(4^{2x+1}) \\ 5x \ln{3} &= (2x+1)\ln{4} \\ 5x \ln{3} &= 2x \ln{4} + \ln{4} \\ x( 5 \ln{3} - 2 \ln{4} ) &= \ln{4} \\ x &= \frac{\ln{4}}{5 \ln{3} - 2 \ln{4}} \tagans \end{align*}\]

$\example{9}$ Solve for $x$: $e^x-6e^{-x} = -1$

$\solution$

To remove the negative exponent, multiply both sides of the equation by $e^x$,

\[\begin{align*} e^x-6e^{-x} &= -1 \\ e^x (e^x-6e^{-x}) &= e^x(-1) \\ e^{2x}-6 &= -e^x \\ e^{2x}+e^x-6 &= 0 \end{align*}\]

The factor the equation,

\[\begin{align*} (e^x+3)(e^x-2) &= 0 \end{align*}\]

Thus,

\[\begin{align*} x+3 &= 0 & x-2 &= 0 \\ x &= -3 & x &= 2 \tagans \end{align*}\]