Mobile Notice
It seems that you are on your mobile phone, which means that the screen's width is narrow for some equations. For the best viewing experience, you can view this website in landscape mode.

Conversion of Units

Author | Engr. Nico O. Aspra, M.Eng., RMP, LPT

$$ $$

From the previous section, we have discussed that some have not yet adopted the SI units. With this in mind, we will be encountering different units from time to time. Hence, converting a unit from one system to another is essential before proceeding to the succeeding topics. Furthermore, the relationship between two quantities that have the exact dimensions are inter-changeable through conversion factors.

For example, a rod that has a length of 5 m can also be presented in feet (ft), since both meter and feet are units that represent the dimension of length.

Since 1 m = 3.28 ft, we can use this equality as a multiplier to convert from meters to feet or feet to meters. However, in this case, we will be converting from meters to feet.

To do that, we will start with the initial value of 5 m, then in order to cancel the meter, express the equality as a fraction where the value with a unit of a meter is at the denominator. Thus, performing the expression will result in the equivalent length with the unit feet.

\[\begin{align*} \un{Length} &= 5\mathrm{\cancel{m}} \br{ \frac{3.28 \un{ft}}{1\mathrm{ \cancel{m}}} } \\ &= 16.4 \un{ ft} \tagans \end{align*}\]

The tables below show some of the commonly used conversion factors. Take note of the different factors, since some of which will be used frequently in the succeeding lessons.

Table 1

$\phantom{WWWW}$ Length $\phantom{WWWW}$
m 3.28 ft
  100 cm
in 2.54 cm
ft 12 in
yd 3 ft
mile 1.609 km
  5,280 ft
n. mile 6,080 ft
league 3 n.miles
hand 4 in
span 9 in
fathom 6 ft
furlong 660 ft
cable 120 fathom
rod 16.5 ft
chain 66 ft
vara 33.33 in
mil 0.001 in

Table 2

$\phantom{WWWW}$ Mass $\phantom{WWWW}$
kg 2.2046 lbm
slug 32.2 lbm
gm $6.024\times10^{23}$ amu
ounce 28.35 g
kip 1,000 lbm
mtons 1,000 kg
ton 2,000 lbm
long ton 2,240 lbm

Table 3

$\phantom{WWWW}$ Time $\phantom{WWWW}$
min 60 sec
hr 60 min
day 24 hr
week 7 day
yr 12 mo
  52 week

Table 4

$\phantom{WWWW}$ Area $\phantom{WWWW}$
ha 10,000 m$^2$
  100 ares
are 100 m$^2$
acre 43,560 ft$^2$
section 1 mi$^2$
circular mil $5.067\times10^{-10}$ m$^2$

Table 5

$\phantom{WWWW}$ Volume $\phantom{WWWW}$
m$^3$ 1,000 L
  1 stere
gal 3.78 L
  4 qt
  8 pt
  16 cup
  128 oz
  256 tbsp
  768 tsp
UK gal 1.2009 gal
US bbl 158.99 L
  42 gal
ft$^3$ 7.48 gal
ganta 3 L
  8 chupas
cavan 25 ganta

Table 6

$\phantom{WWWW}$ Force $\phantom{WWWW}$
kg$_f$ 9.80665 N
lb$_f$ 4.448 N
  32.2 poundal
  1 slug-ft/sec
ton$_f$ 2,000 lb$_f$
N 100,000 dynes

Table 7

$\phantom{WWWWWWa}$ Work $\phantom{WWWWWWi}$
Btu 1,055.0559 J
  778.169 ft-lbf
cal 4.1858 J
J $1.602\times10^{19}$ eV
  107 erg
erg 1 dyne-cm
chu 1.8 Btu
therm 105 Btu

Table 8

$\phantom{WWWi}$ Power $\phantom{WWW}$
hp 746 W
  550 ft-lbf/sec
  1.014 MHP
BHP 35,322 kJ/hr
kW 3,413 Btu/hr
TOR 3.516 kW
  12,000 Btu/hr

Table 9

$\phantom{WWWWW}$ Pressure $\phantom{WWWWa}$
atm 101.325 kPa
  1.01325 bar
  1,013,250 dynes/cm$^2$
  14.7 psi
  760 mmHg
  10.33 mH$_2$O
bar $1\times10^5$ Pa

Table 10

$\phantom{WWWa}$ Angle $\phantom{WW}$
rev 360 deg
  2$\pi$ rad
  400 grad
  400 gon
  6,400 mils
deg 60 min
min 60 sec
sphere 4$\pi$ steradian

$\example{1}$ If a road stretches 5 miles, how long is it in inches?

$\solution$

From Table 1, 1 mile = 5,280 ft and 1 ft = 12 in

\[\begin{align*} \un{Length of road} &= 5 \un{ \cancel{miles}} \br{ \frac{5,280\un{ \cancel{ft}}}{1\un{ \cancel{mile}}} } \br{ \frac{12 \un{ in} }{1\un{ \cancel{ft}}} } \\ &= (5)(5,280)(12\un{ in}) \\ &= 316,800 \un{ in} \tagans \end{align*}\]

$\example{2}$ How many years older will you be 1 gigasecond from now? (Assume a 365-day year)

$\solution$

From the SI prefixes, $1 \un{Gs} = 10^9 \un{s}$. And from Table 3, 1 min = 60 sec, 1 hr = 60 min, 1 day = 24 hrs

\[\begin{align*} \un{time elapsed} &= 1 \un{ \cancel{Gs}} \br{ \frac{10^9 \cancel{\un{s}}}{1 \un{ \cancel{Gs}}} } \br{ \frac{1 \un{ \cancel{min}}}{60 \un{ \cancel{s}}} } \br{ \frac{1 \un{ \cancel{hr}}}{60 \un{ \cancel{min}}} } \\ & \phantom{=====} \br{ \frac{1 \un{ \cancel{day}}}{24 \un{ \cancel{hr}}} } \br{ \frac{1 \un{ year}}{365 \un{ \cancel{days}}} } \\ &= (1)(10^9) \br{ \frac{1}{60} } \br{ \frac{1}{60} } \br{ \frac{1}{24} } \br{ \frac{1 \un{ year}}{365} } \\ &= 31.71 \un{ years} \tagans \end{align*}\]

$\example{3}$ A student sees an ad from a social networking site of an apartment that has 225 ft$^2$ of floor area. How many square meters of area are there?

$\solution$

From Table 1, 1 m = 3.28 ft

\[\begin{align*} \un{Area} &= 225 \un{ ft}^2 \br{ \frac{1 \un{ m}}{3.28 \un{ ft}} }^{\!2} \\ &= 225 \cancel{\un{ ft}^2} \br{ \frac{1 \un{ m}^2}{10.7584 \cancel{\un{ ft}^2}} } && \tcAal{square both the numerator and the denominator} \\ &= 20. 91 \un{ m}^2 \tagans \end{align*}\]

$\example{4}$ The density of gold is 19.3 g/cm$^3$. What is its density in kilograms per cubic meter?

$\solution$

From the SI prefixes, $1\un{kg} = 10^3 \un{g}$ and $1 \un{cm} = 10^{-2}\un{m}$. Hence,

\[\begin{align*} \rho &= 19.3 \frac{\cancel{\un{g}}}{\un{cm^3}} \br{ \frac{1 \un{kg}}{10^3\cancel{\un{g}}} } \br{ \frac{1\un{cm}}{10^{-2}\un{m}} }^3 \\ &= 19.3 \frac{\un{kg}}{\cancel{\un{cm^3}}} \br{ \frac{1}{10^3} } \br{ \frac{1 \cancel{ \un{cm^3}}}{10^{-6}\un{m}^3} } \\ &= (19.3)\br{ \frac{1}{10^3} } (10^6) \frac{\un{kg}}{\un{m}^3} \\ &= 19.3 \times 10^3 \frac{\un{kg}}{\un{m}^3} \tagans \end{align*}\]

As you may have observed, dealing with units other than the SI units can be a little mind-boggling, especially in the English system. Imagine just converting from feet to inches; where did 12 come from?. And don’t get me started; this is just a simple example. The English system is such an “eccentric” system.

With this in mind, to simplify our solutions, when there is a given not presented in SI units, the first step that we need to undergo will be converting to SI units.