Mobile Notice
It seems that you are on your mobile phone, which means that the screen's width is narrow for some equations. For the best viewing experience, you can view this website in landscape mode.

The Chain Rule

Author | Engr. Nico O. Aspra, M.Eng., RMP, LPT

Functions may not always appear as simple as the examples given from the past sections. Hence, differentiating complexly structured functions such as a composite function cannot be easily solved by the previously discussed rules. With this in mind, we will introduce the Chain Rule in this section to differentiate composite functions. Notably, this rule is essential and may be one of the most widely used rules in Calculus. It may seem ambiguous now, but composite functions appear more frequently than it seems.

To start our discussion, let us first describe what the Chain Rule is and how to use it. Consider the composite function y=f(g(x)), let u=g(x) so that we could simplify the function to y=f(u). Where f(u) is the outer function and g(x) is the inner function, given that f(u) is differentiable to g(x) and g(x) is differentiable to x. The derivative of the composite function f(g(x)) with respect to x is equal to the product of the derivative of the outer function and the derivative of the inner function.

(fg)(x)=f(g(x))g(x)

In Leibniz’s Notation, if u=g(x) so that y=f(u), then

dydx=dydududx

Where dy/du is the derivative of the outer function y=f(u) and du/dx is the derivative of the inner function u=g(x). To illustrate how the chain rule works, consider the following example.


Example 1: Differentiate the function y=(x2+x)3.

Solution:
Let: u=x2+xy=u3

Differentiate the function with respect to u,

ddu(y)=ddu(u3)dydu=3u2

Then differentiate u=x2+x with respect to x,

ddx(u)=ddx(x2+x)dudx=2x+1

Thus, applying the Chain Rule gives us,

dydx=3u2(2x+1)dydx=dydududx

Since u=x2+x,

dydx=3(x2+x)2(2x+1)

General Power Rule

The General Power Rule is a special case of the chain rule. This rule is meant to evaluate functions in the form of y=[f(x)]n or y=un, given that u is a function of x.

The derivative of the function y=un with respect to x is equal to the product of the exponent n, the power of a function with the exponent diminished by one un1, and the derivative of the inner function du/dx.

ddx(un)=nun1dudx

And we can also prove this by using the Chain Rule (Equation2). Consider the function y=un.

Differentiate the function with respect to u,

ddu(y)=ddu(un)dydu=nun1

Then differentiate u with respect to x,

ddx(u)=dudx

Thus, applying the Chain Rule,

dydx=dydududx=nun1dudx

Example 2: Differentiate the function y=(7x2+1)5.

Solution:

Apply the General Power Rule, ddx(y)=ddx[(7x2+1)5]dydx=5(7x2+1)4ddx(7x2+1)derivative of theinner functionu=7x2+1=5(7x2+1)4(14x)=70x(7x2+1)4


Example 3: Differentiate the function y=(5x3)4.

Solution:

Apply the General Power Rule, ddx(y)=ddx[(5x3)4]dydx=4(5x3)5ddx(5x3)u=5x3=4(5x3)5(13)=43(5x3)5


Example 4: Differentiate the function y=1(5x2+1)2+(x2+2)1/3.

Solution:

Simplify the expression,

y=(5x2+1)2+(x2+2)1/3

Then differentiate the function by applying the Sum Rule along with the General Power Rule,

ddx(y)=ddx[(5x2+1)2+(x2+2)1/3]dydx=2(5x2+1)3ddx(5x2+1)derivative of (5x2+1)2+13(x2+2)131ddx(x2+2)derivative of (x2+2)1/3=2(5x2+1)3(10x)+13(x2+2)2/3(2x)=20x(5x2+1)3+2x3(x2+2)2/3

Example 5: Differentiate the function x=5t4t2+2t+7.

Solution:

Express the radical as a power of a rational exponent,

x=(5t4t2+2t+7)1/2

Then differentiate the function,

\begin{align*} \ddt\br{x} &= \ddt\brk{\br{5t^4-t^2+2t+7}^{1/2}} \\ \frac{dx}{dt} &= \frac{1}{2}\br{5t^4-t^2+2t+7}^{\frac{1}{2}-1} \cdot \ddt\br{5t^4-t^2+2t+7} \\ &= \frac{1}{2}\br{5t^4-t^2+2t+7}^{-1/2} \br{20x^3-2t+2} \\ &= \frac{\cancel{2} (10x^3-t+1)}{\cancel{2} (5t^4-t^2+2t+7)^{1/2}} \\ &= \frac{10x^3-t+1}{\sqrt{5t^4-t^2+2t+7}} \tagans \end{align*}

\example{6} Find the slope at point (1,9) of the curve y = (2x-1)^3(x+2)^2

\solution

Apply the Product Rule along with the General Power Rule, \begin{align*} \ddx\br{y} &= \ddx\brk{(2x-1)^3(x+2)^2} \\ \dydx &= \ubrace{(2x-1)^3 \cdot\ddx\brk{(x+2)^2}}{$u\cdot\frac{dv}{dx}$} + \ubrace{(x+2)^2 \cdot\ddx\brk{(2x-1)^3}}{$v\cdot\frac{du}{dx}$} \quad \tcA{\ddx{uv}=u\frac{dv}{dx}+v\frac{du}{dx}} \\ &= (2x-1)^3 [2(x+2)(1)] + (x+2)^2 [3(2x-1)^2(2)] \\ &= 2(2x-1)^3 (x+2) + 6(x+2)^2 (2x-1)^2 \\ \end{align*}

At point (1,9),

\begin{align*} &= 2[2(1)-1]^3 [(1)+2] + 6[(1)+2]^2 [2(1)-1]^2 \\ &= 60 \tagans \end{align*}

\example{7} Differentiate the function \textstyle{ y = \sqrt{1+\sqrt{x+1}} }

\solution

There are situations when we must use the chain rule multiple times to determine the derivative. This particular example is one of its instances. To start, let us first express the radical as a power of a rational exponent.

\begin{align*} y &= \br{1+(x+1)^{1/2} }^{1/2} \\ \end{align*}

Differentiate the function by applying the chain rule more than once,

\begin{align*} \ddx\br{y} &= \ddx\brk{ \br{1+(x+1)^{1/2} }^{1/2} } \\ \dydx &= \frac{1}{2} \brk{1+(x+1)^{1/2} }^{1/2-1} \cdot\ddx\brk{1+(x+1)^{1/2} } \\ &= \frac{1}{2} \brk{1+(x+1)^{1/2} }^{-1/2} \brk{0+\frac{1}{2}(x+1)^{1/2-1} \cdot \ddx\br{x+1} } \\ &= \frac{1}{2} \brk{1+(x+1)^{1/2} }^{-1/2} \brk{\frac{1}{2}(x+1)^{-1/2} (1) } \\ &= \frac{1}{4} \brk{1+(x+1)^{1/2} }^{-1/2} (x+1)^{-1/2} \\ &= \frac{1}{4} \bbbrk{ \brk{ 1+(x+1)^{1/2} } (x+1) }^{-1/2} \\ &= \frac{1}{4\brk{ (1+\sqrt{x+1})(x+1) }^{1/2}} \\ &= \frac{1}{4\sqrt{ (1+\sqrt{x+1})(x+1) } } \tagans \end{align*}