In our previous lesson, we have reviewed some of the fundamental concepts in trigonometric functions. Since before we can differentiate such functions, we must first be proficient in transforming functions from one form to another. Below are some of the different formulas for differentiating trigonometric functions. For the following formulas, let u be a function of x.
ddu(sinu)=cosuddu(cosu)=−sinuddu(tanu)=sec2uddu(cotu)=−csc2uddu(secu)=tanusecuddu(cscu)=−cotucscu
Differential Formulas for Trigonometric Functions
As you may have realized, there is only a small difference between the formulas for differentiation and its differentials.
d(sinu)=cosudud(cosu)=−sinudud(tanu)=sec2udud(cotu)=−csc2udud(secu)=tanusecudud(cscu)=−cotucscudu
Example 1: Find the differential of the function y=sin5x
Solution:
To solve for the derivative of the function, use Equation1,
ddx(y)=ddx(sin5x)dydx=cos5x⋅ddx(5x)=cos5x⋅5=5cos5xExample 2: Determine the second derivative of the function y=cos(3−2x)
Solution:
In this example, use Equation2,
ddx(y)=ddx(cos(3−2x))dydx=−sin(3−2x)⋅ddx(3−2x)=−sin(3−2x)(−2)=2sin(3−2x)=2sin(3−2x)Then differentiate again,
ddx(dydx)=d[2sin(3−2x)]d2ydx2=2cos(3−2x)⋅ddx(3−2x)=2cos(3−2x)⋅(−2)=−4cos(3−2x)d2ydx2=−4cos(3−2x)Example 3: Differentiate the function with respect to θ: x=sec2θ+tan3θ
Solution:
To solve for the derivative of the function, use Equations 11 and 9,
d(x)=d(sec2θ+tan3θ)dx=tan2θsec2θ⋅d(2θ)+sec23θ⋅d(3θ)=tan2θsec2θ⋅2dθ+sec23θ⋅3dθ=(2tan2θsec2θ+3sec23θ)dθdxdθ=2tan2θsec2θ+3sec23θExample 4: Find the derivative of x with respect to y of the function y=tanx−x
Solution:
To solve for the derivative of the function, use Equation9,
d(y)=d(tanx−x)dy=sec2xdx−dx=(sec2x−1)dxFrom the Pythagorean Identities,
tan2x+1=sec2xsec2x−1=tan2xSubstituting this to the soultion,
dy=tan2xdxHence,
dxdy=1tan2x=cot2xExample 5: Differentiate the function with respect to t. w=t5csc4t
Solution:
In this example, before we can use a differential formula for trigonometric function, we first need to apply the Product Rule.
d(w)=d(t5⋅csc4t)dw=t5⋅d(csc4t)+csc4t⋅d(t5)=t5[−cot4tcsc4t(4dt)]+csc4t(5t4dt)=[−4t5cot4tcsc4t+5t4csc4t]dtdwdt=5t4csc4t−4t5cot4tcsc4tExample 6: Find the differential of the function v=sec2(x6)
Solution:
In this example, we can recall that sec2(x6) can also be expressed as [sec(x6)]2. With this in mind, we can use the power rule to differentiate the function.
d(v)=d[[sec(x6)]2]=2sec(x6)⋅d[sec(x6)]=2sec(x6)⋅[tan(x6)sec(x6)⋅d(x6)]=2sec(x6)⋅[tan(x6)sec(x6)⋅16dx]=13tan(x6)sec2(x6)dxExample 7: Let a be hold constant. Determine the third derivative of the function y=cosax
Solution:
In this example, a is treated as a constant. Thus,
d(y)=d(cosax)dy=−sinax⋅d(ax)=−sinax⋅adx=−asinaxdxThen differentiate again,
d(dy)=d(−asinaxdx)d2y=−acosaxdx⋅(adx)=−a2cosaxdx2And differentiating for the last time,
d(d2y)=d(−a2cosaxdx2)d3y=−(−a2sinaxdx2)⋅(adx)=a3sinaxdx3d3ydx3=a3sinaxExample 8: Determine the y′ of the function s=sec(sint)
Solution:
To evaluate this example, use the chain rule.
d(s)=d(sec(sint))ds=tan(sint)sec(sint)⋅d(sint)=tan(sint)sec(sint)costdtdsdt=tan(sint)sec(sint)costExample 9: Let A, B, and k be constants. From the function y=Acoskx+Bsinkx, show that d2ydx2=−k2x.
Solution:
Differentiate the function twice.
d(y)=d(Acoskx+Bsinkx)dy=A(−sinkx)(kdx)+Bcoskx(kdx)=(−Aksinkx+Bkcoskx)dxd(dy)=d[(−Aksinkx+Bkcoskx)dx]d2y=[−Akcoskx(kdx)+Bk(−coskx)(kdx)]dx=(−Ak2coskx−Bk2coskx)dx2d2ydx2=−Ak2coskx−Bk2coskx=−k2(Ak2coskx+Bcoskx)Since y=Acoskx+Bsinkx,
d2ydx2=−k2y